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Self-affine fractals and the limit H —0
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A modilgifd form for the surface-height-fluctuation correlation function of rough surfaces,
g,(R)x f aofgx M (¢~ /x)dx, is investigated which depicts behavior related to self-affine fractals for

0<H <1, and for H—0 with gy << R << § reveals logarithmic behavior g, (R) < In(R /a,).

PACS number(s): 64.60.Ak, 64.60.Ht

Recently, there has been considerable interest in the
study of stochastically growing surfaces in the context of
various surface growth models from theoretical and ex-
perimental points of view [1]. In general, nonequilibrium
effects introduce a relevant nonlinearity which causes an
anomalous power-law growth of the height fluctuations
[2]. Under certain conditions this power law can be re-
placed by a logarithmic law [3-6]. In the latter case the
short-range roughness exponent H is equal to zero, which
is a rather subtle situation since a three-dimensional ob-
ject can be either a fractal or a Euclidean volume. In the
context of surface-roughness studies, the knowledge of
the surface height correlation function is essential not
only for the determination of characteristic surface pa-
rameters, but also for an understanding of the impact of
the surface morphology on various physical phenomena.

The type of rough surface in the static phase we shall
consider here is the so-called solid-on-solid model, in
which the surface is defined by a vertical height profile
above a horizontal xy plane, and is represented by a
single-valued random function z(r) of the in-plane posi-
tional vector r=(x,y). The difference z(r)—z(r’) is as-
sumed to be a Gaussian random variable whose distribu-
tion depends on the relative coordinates (x'—x,y’ —y)
such that g(R)={([z(r)—z(r')]*), R=r'—r. For an iso-
tropic surface in x-y directions we may assume that

g(R)= AR | (D

with 0 < H < 1. This kind of surface roughness can be at-
tributed to self-affine fractal surfaces as defined by Man-
delbrot in terms of fractional Brownian motion [7]. The
roughness exponent H determines the surface texture,
and is associated with a local fractal dimension D =3 —H
[7,8]. For R— o, g(R)— « and g(R)/R*—0 (surface
asymptotically flat), which is a rather ideal case since on
real surfaces g(R) at large length scales may saturate to
the value 202. The parameter o ={z(0)?)!/? is the rms-
saturated surface roughness. This implies the existence
of an effective roughness cutoff £ (correlation length) such
that for R <<&, g(R)x<R?H# [9,10]. Therefore, on real
surfaces g (R) satisfies the following conditions:

g(R)=R?* R <<§&, (2a)
g(R)=20%, R>E, (2b)
withO< H < 1.
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Up to now the functional form for g(R) which has
been used in the literature to incorporate finite-size
effects for self-affine fractals in the static phase has the
form g(R)=202[1—e*(R/§)2H] [9,10]. The exponential
term in the previous equation is the well-known
Kohlrausch-Williams-Watts function which has been
used to fit miscellaneous experimental data [8-11]. How-
ever, this function does not address the H =0 case, which
is related to the existence of a lower fractal bound, and is
of fundamental interest to account for predictions related
to the nonequilibrium roughening transition [3-6].
Rather, it reveals a trivial behavior. Wong et al. [12]
have introduced a scaling form for g(R) when H =0, in
order to incorporate finite-size effects (finite £) in scatter-
ing studies of logarithmic roughness related to the
roughening transition, which, however, does not arise as
a limiting case of self-affine fractal correlation of finite £.

Therefore, our purpose in this paper is to investigate
an alternative functional form for g(R) which for
0 < H <1 reveals characteristics related to self-affine frac-
tals, and in the limit H —0 possesses a nontrivial (loga-
rithmic) behavior. The proposed form for g (R) is the fol-
lowing:

R/ sge ™

— 2
g,(R)=20 BY(H)fao/gx —adx (3a)
-1
L_/& —Xx
— m 2HE
B, ()= | [ © %M —ax| (3b)

where a, is the atomic spacing, and L,, the macroscopic
surface size.

The choice of this particular form to describe g (R) has
its origin in critical phenomena, as well as in previous
studies of fractal systems. In fact, Egs. (3) have been in-
troduced in a manner analogous to that used in critical
phenomena [13], and in x-ray scattering studies of fractal
aggregates where, apart from the integration over the
length scales (aq,R), the corresponding expression of the
pair correlation function has the form ~R? 3¢ R/ &
with D being the fractal dimension [14].

The small-length-scale behavior of Eq. (3a) has the fol-
lowing characteristics. For aj << R <<§,

B, (H)
2H

g,(R)=[20?] (R/EH—(E/ag)]=R*® | (4)
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which is consistent with the self-affine nature for
0< H < 1. In addition, in the limit H —0,

gy(R)lH_,ozZUZB},(O)ln(R /ay) . (5)

This logarithmic behavior is met in the context of various
surface growth models related to the roughening transi-
tion [3-6]. In general, for purely two-dimensional sys-
tems, if we ignore finite-size effects, the capillary wave
fluctuations cause g (R) to follow a logarithmic behavior,
g(R)~In(R) [9]. Equations (4) and (5) imply that the
small-length-scale expansion of self-affine fractal surfaces
has to be in general of the form

o 2H_
g(R)= 2H[(R/ao) 1] 6)

in order to be consistent with the characterization that
the surface becomes more irregular as H becomes small-
er. Specifically, g, (R)/ o2, which represents a measure of
the height-height-fluctuation density, acquires larger
values as H decreases, resulting in more dense surface
height-height fluctuations or more jagged surfaces (Fig.
1). Such behavior is related to the existence of a lower
fractal bound, which is necessary in order that the loga-
rithmic behavior arises from power-law fluctuations
[12,15].

We illustrate in general the applicability of Egs. (3)
(which can be relevant in experimental studies [9,10,12])
in terms of a fit to correlation data acquired from a
100.0-nm-thick silver film, thermally evaporated on a pol-
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FIG. 1. Schematics for g,(R)/0? as a function of H, £=9.3
nm, a;=0.27 nm. H=0.0: small dashes; H=0.2: dashes;
H=0.4: long dashes. The solid line depicts a fit of Egs. (3) to
the correlation data (squares) of the annealed 106-K silver film,
with H,=0.69, and §,=9.3 nm, as well as a;=0.27 nm and
L, =10° nm. The fit to the function g(R)/c*=2[1—e “”5’2”]
is shown, with H=0.72 and £=12.3 nm (dot-dashed line). The
inset depicts a power-law fit (squares) to determine H, which
gives H,=0.7210.05. The arrow indicates the position of the
correlation length &, with respect to the regime where
significant deviation from power-law behavior occurs.

ished quartz crystal held at 106 K. The system base pres-
sure was ~5X10~® Torr, and ~5X10~7 Torr during
deposition. The silver film was left to be annealed until it
reached room temperature. The correlation data ac-
quired by means of scanning tunneling microscopy (STM)
in a dry N, gas environment. The scan size was 500.0 nm
with 400 points per line scan, and four files of correlation
data acquired at different locations on the surface have
been averaged. The value of H in terms of a power-law fit
is H,=0.7210.05 (inset). A fit of Egs. (3) has been per-
formed with H,=0.69 L,,=10° nm, and a,=0.27 nm
(solid line). During the fit parameters a, and L,, were
kept constant to the previous values, which were used as
a typical atomic spacing for silver atoms, and macroscop-
ic sample size. Essentially, since L,, >>£ the fit is insensi-
tive to the particular choice of the microscopic surface
size, where the ratio L, /£ can be considered to be
infinite. The value of o0 =1.0 nm has been estimated for
every image directly using the STM utility to calculate
the rms surface roughness over a surface area 500X 500
nm?, and averaged over the four data files (ensemble aver-
age). In this manner, 202 essentially corresponds to the
large-distance value of g(R), R >>§, over the scan size
used to acquire the correlation data ( ~500.0 nm). How-
ever, since o2 represents a normalization factor, it has
been removed from the data during the fit in order to
focus mainly on the two surface parameters H and £.
The parameters H and £ were varied during the fit in a
restrictive manner, as is explained below. The parameter
H, was allowed to deviate from the power-law fit values
H,=0.72 only by £0.05 in order for the fit to have phys-
ical meaning, since the power-law fit determines uniquely
the roughness exponent H to within the specified limit of
accuracy. The correlation length £ can be determined as
the length scale for which g(R) acquires the value g(£).
However, in order for the correlation length and subse-
quently g(R) to have real significance, £ has to be located
in the regime where a remarkable deviation from power-
law behavior occurs. In our case this occurs for
g(R =§)=1, and the corresponding length scale from the
data [squares, Fig. 1] yield £,=9.5+0.5 nm. £, was al-
lowed to vary during the fit from the value 9.5 nm only in
between the specificed limits of accuracy, £0.5. The
value of £, is of real significance for the corresponding
surface morphology, since it is located in the regime
where a remarkable deviation occurs from linear (power-
law) behavior, and also compares favorably with cluster
sizes obtained from STM images.

In conclusion, the aim of this paper was to introduce a
modified scaling form of the surface-height-fluctuation
correlation function g(R), which in the limit H—0
posses logarithmic behavior. Direct comparison with
correlation data shows the adequacy of this form to de-
scribe real surface correlations beyond the power-law
regime. At the same time the traditional fit
using the Kolrausch-Williams-Watts function g(R)/o?
=2[1—e ®R%™] for the same data (Fig. 1) is
significantly good in the regime of length scales R <2§&
with £=12.3 nm [determined from the length scale that
corresponds to g(R =¢&)/0?]. Furthermore, Egs. (2) can
be relevant in a larger scale of experimental studies, e.g.,
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where information for the surface morphology is ob-
tained though g(R), and especially for the cases in which
the roughness exponent H attains significantly small
values or becomes zero [9,10,12].
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